Notes concerning

THE YONEDA LEMMA

Let \mathcal{C} be a category. We write $[\mathcal{C}^{op}, \mathbf{Set}]$ for the category of contravariant functors $\mathcal{C} \to \mathbf{Set}$. This is also denoted as $\mathbf{Set}^{\mathcal{C}^{op}}$, or the category of presheaves over \mathcal{C} .

We can define the Yoneda embedding, a functor $Y:\mathcal{C}\to [\mathcal{C}^{\mathrm{op}},\mathbf{Set}]$ that takes:

- objects A of C to the functor $\operatorname{Hom}(-,A): \mathcal{C}^{\operatorname{op}} \to \mathbf{Set}$
- arrows $f: A \to B$ to the natural transformation $\operatorname{Hom}(-,f): \operatorname{Hom}(-,B) \Longrightarrow \operatorname{Hom}(-,A)$, which has components:

$$\operatorname{Hom}(-,f)_C: \operatorname{Hom}(C,B) \to \operatorname{Hom}(C,A)$$

 $(g:C \to B) \mapsto f \circ g:C \to A$

For convenience, we may be use $(f \circ -)$ to denote both the components and the natural transformation itself.

Note that for any C in \mathcal{C} , the hom-functor $\mathrm{Hom}(-,C)$ sends arrows $f:A\to B$ to the function

$$\operatorname{Hom}(f,C):\operatorname{Hom}(B,C)\to\operatorname{Hom}(A,C)$$

 $(g:B\to C)\mapsto g\circ f$

which we may write as $(- \circ f)$, and is not to be confused with the *natural transformation* $(f \circ -)$ above.

Now, let $F: \mathcal{C}^{\mathrm{op}} \to \mathbf{Set}$ be a presheaf on \mathcal{C} .

Lemma 1 (Yoneda). For every object C of C there is a canonical isomorphism

$$\operatorname{Hom}(YC, F) \cong FC$$

Proof. Fix an object C of C. Note that YC, F are themselves presheaves on C, so the elements of the homset on the left are actually natural transformations. So we can equivalently write:

$$Nat(Hom(-, C), F) \cong FC.$$

We begin by defining a function

$$\varphi : \operatorname{Nat}(\operatorname{Hom}(-, C), F) \to FC$$

 $\varphi(\eta) = \eta_C(\operatorname{id}_C)$

Next we verify that φ is injective. Suppose that $\varphi(\eta) = \varphi(\theta)$, so that

$$\eta_C(\mathrm{id}) = \theta_C(\mathrm{id}).$$

We want to show that $\eta_B = \theta_B : \operatorname{Hom}(B,C) \to FB$ for any object B of C. That is, that for any $f: B \to C$ we have $\eta_B(f) = \theta_B(f)$. So pick an arrow $f: B \to C$.

Now we form the naturality square of η :

$$\begin{array}{c} \operatorname{Hom}(C,C) \xrightarrow{(-\circ f)} \operatorname{Hom}(B,C) \\ \downarrow^{\eta_C} & \downarrow^{\eta_B} \\ FC \xrightarrow{Ff} FB \end{array}$$

If we follow $id_C \in Hom(C, C)$ around both ways we see that:

$$\eta_B \circ (f \circ -)(\mathrm{id}) = Ff \circ \eta_C(\mathrm{id})$$

$$\eta_B(f) = Ff(\eta_C(\mathrm{id}))$$

By forming the naturality square for θ we similarly see that

$$\theta_B(f) = Ff(\theta_C(id))$$

$$= Ff(\eta_C(id))$$

$$= \eta_B(f)$$

Therefore $\eta = \theta$, as desired, and we see that φ is indeed injective.

The final step is to show that φ is surjective. Pick an element x of FC. We want to find an η such that

$$\varphi(\eta) = x$$
 $\eta_C(\mathrm{id}) = x$

We define η by

$$\eta_B(f) = Ff(x).$$

For if $f: B \to C$ then $Ff: FC \to FB$, and so Ff(x) is an element of FB. So we have defined a family of arrows $\eta_B: \operatorname{Hom}(B,C) \to FB$. It just remains to verify that η is natural.

Let $f: A \to B$, and form the naturality square:

$$\begin{array}{ccc} \operatorname{Hom}(B,C) & \xrightarrow{(-\circ f)} & \operatorname{Hom}(A,C) \\ & & \downarrow^{\eta_B} & & \downarrow^{\eta_A} \\ FB & \xrightarrow{Ff} & FA \end{array}$$

Pick a g in Hom(B,C), so $g:B\to C$, and follow it around the square:

$$Ff \circ \eta_B(g) = Ff(Fg(x))$$

= $F(g \circ f)(x)$ for F is contravariant
= $\eta_A(g \circ f)$
= $\eta_A \circ (-\circ f)(g)$

Hence we see that the square commutes and η is indeed natural. Therefore φ is surjective, and in fact bijective, which is what we wanted to show.

As a corollary, we see that

Proposition 2. The Yoneda functor is in fact an embedding (fully faithful functor).

Proof. We want to show that for every A, B of C the map

$$Y: \operatorname{Hom}(A,B) \to \operatorname{Nat}(YA,YB)$$
$$(f:A \to B) \mapsto (f \circ -): YA \implies YB$$

is a bijection.

By above we have an iso:

$$\varphi: \operatorname{Nat}(YA, YB) \to (YB)A$$

$$= (\operatorname{Hom}(-, B))A$$

$$= \operatorname{Hom}(A, B)$$

Suppose $f: A \to B$. Observe that:

$$\varphi \circ Y(f) = Yf(id)$$

$$= (f \circ -)(id)$$

$$= f$$

So we see that in fact $\varphi \circ Y = \operatorname{id} : \operatorname{Hom}(A, B) \to \operatorname{Hom}(A, B)$. Therefore (as we know φ to be a bijection) it follows that Y is a bijection, as desired.